
This is a story that explores the complex history of New York City’s drinking watershed. The story will be told incrementally, beginning in geologic time, and ending where we are today.
Timeline / Table of Contents
Key Underlined text: available content Regular text: future content scheduled for release
550 Million Years Ago
The landscape takes form
9000 BC
Native Americans inhabit the land
1830s
Water system construction begins
1900s
From the Housatonic to the Hudson – Two Plans Subsequently Scrapped
Water Expansion by Eminent Domain, Part I
Water Expansion by Eminent Domain, Part II
Building The Ashokan Reservoir
Water Labor
1920-1930s
Waste in the Watercourse
Under the Hudson
Removing Gilboa
From the Supreme Court to the Delaware
Tapping the Delaware River
Aqueducts
1960-1980s
The EPA
The New York City Water Board
The Reagan Years
1990s
Contamination and Bottled Water
Alan Hevesi
DEP Watershed Regulations
1997 New York City Watershed Memorandum of Agreement
International Water Infrastructure Privatization, Part II
2000-2010s
International Water Infrastructure Privatization, Part III
Mismanaged Water Infrastructure Privatization
The Water System Updates
Power Sharing and Participation, Part I
Power Sharing and Participation, Part II
Filtration, Part I
Filtration, Part II
2020
The Present, Part I
The Present Part II
The Future

A Story About the NYC Drinking Watershed
Introduction
June 29, 2020
The US is experiencing not only a substantial economic and public health crisis related to Covid-19 but an underlying public water crisis. Millions of people face obstacles to access safe, clean running water daily. Agricultural runoff, byproducts of disinfection agents, as well as aging infrastructure like lead pipes have contaminated drinking water, especially in minority and low-income communities. In 2014, the city of Detroit began disconnecting residents’ water as part of a debt-collection program, and has since disconnected over 141,000 households in an act that the United Nations deemed a human rights violation. Infrastructure repairs, environmental clean-ups, and water privatization have all led to higher costs for individuals. While the cost for water has been rising around the US, the billion-dollar bottled water industry continues to use public water sources at unimaginably low costs for their products. (The Guardian, June 23, 2020)
Last month, additional EPA regulations were rolled back, this time Section 401 of the Clean Water Act. Section 401 gives states and First Nations veto power over industry projects that would impact local populations. These rollbacks make it easier for industries to frack, mine, and build pipelines in sensitive areas. This will affect land, air, and water, creating additional environmental sacrificial zones (mining and fracking have been found to heighten drinking water contamination risk from toxins like benzene, diesel, heavy metal pollution, cyanide and sulphuric acid to name some).
New York and surrounding states have used Section 401 to protect residential drinking water numerous times, including by creating high profile projects like the Constitution Pipeline and the Northeast Supply Enhancement Pipeline. Addressing environmental, health, and economic conditions in and around New York City’s watershed is a vital precondition for the creation of a more just present and future for urban and rural New Yorkers.
The Manhattan Prong
The Manhattan Prong was formed approximately 550 million years ago and extended all the way to southwest Connecticut (from the Algonquian Quinnitukqut meaning “at the long tidal river”). Its formation consisted of rolling hills and valleys, controlled by the underlying bedrock. Much of the bedrock was covered by Atlantic Coastal Plain deposits. Metamorphic rocks resistant to erosion comprised the hills, including the Fordham and Yonkers Gneiss, the Lowerre Quartzite, and the Manhattan Schist. The Hudson, Harlem, and East Rivers and the major north-south valleys in (what is now often referred to colonially as) northern Westchester County are all underlain by easily-erodible Inwood Marble formed from the metamorphosing of shallow water marine carbonate and clastic sediment. The formation of Inwood marble extended to the Inwood section of northern Manhattan. The rocks of the Manhattan Prong were tightly folded and metamorphosed primarily during the Taconian Orogeny, about 450 million years ago.

In Geologic Time
Much of New York State’s bedrock and the Adirondack Mountains were formed by ancient Precambrian crystalline basement rock forms. About 450 million years ago the biotite-rich bedrock (made of gray quartz and white orthoclase) known as the Manhattan Schist transformed from shale to metamorphic rock, and constituted part of Manhattan (from the Munsi language of the Lenni Lenape/Delaware “island of many hills”) during continental collision between the floor of the present-day Atlantic Ocean, and what would later be known as the East Coast of North America. In the area often referred to as midtown Manhattan, the bedrock lies within a few feet of the ground’s surface, and within 40 feet of the surface in lower Manhattan making skyscrapers possible, whereas accessing the bedrock was (and still is) cost-prohibitive at a depth of 4-5 times deeper in other parts of so-called New York City.

Shallow Seas
During the Paleozoic Era, parts of the region were uplifted to form the Allegheny Plateau (a physiographic section of the larger Appalachian Plateau province). Other areas nearby were flooded by shallow seas depositing sedimentary rock sequences. Stream erosion crossed the plain and carved away all of the rock except the harder stone of the higher peaks of the Catskill Mountains, which all have about the same elevation today. Much of the rocks in the Catskill Mountains were deposited by rivers near sea level, and are composed of Devonian-aged sedimentary bedrock (sandstones, shales and conglomerate formed in ancient river valleys). The green and red striated clays visible on the edges of stream banks are ancient glacial lake deposits eroded from siltstones and shales that contain fossil remains of plants, clams, and insects from the Devonian Period.

The Pleistocene
Fast forward to 2.6 million years ago and in the Pleistocene Epoch glaciers carried along vast amounts of sands, soils, gravel, and boulders leaving deposits up to 300 meters thick in some valleys. This left the Catskill region low and flat, and hollowed existing trenches as mammoth ice sheets repeatedly advanced across New York State. The towering ice widened and expanded former river valleys to make the Finger Lake troughs. Some of the finger lakes were pushed down so deeply by these glaciers that their earlier bedrock floors lie below sea level.

Waterscapes
While it took 3.8 billion years to sequester minerals that surround what is still commonly referred to as New York City and build a baptismal freshwater flow, it took less than 100 years of industrial experimentation to corrupt it, and more than 150 years to build a public water system that’s been continually in process…

Colonization and the Power of Language
At the time of European contact in the 16th and 17th centuries, the Wappingers and Canarsee inhabited Manhattan Island in semi-permanent settlements. They were Eastern Algonquian-speaking subgroups of the Algonquian peoples. The Lenni Lenape once occupied most of the northeast coast and Westchester, Putnam, and Dutchess Counties as well as the land between the Delaware and Hudson Rivers—this is known as Lenapehoking, meaning Land of the Lenape. As the myth goes, the Dutch “purchased” Manahatta island from the Canarsee Lenape in 1626. The Canarsee likely viewed the “sale” of Manhattan as a deal to share the land, but not to sell it. The transaction, enforced by the eventual building of a wall around what the Dutch had renamed as New Amsterdam, marked the very beginning of a forced mass migration of the Lenni Lenape from their homeland. The wall, which started showing up on maps in the 1660s, was built to keep the Native Americans and the British out. It eventually was renamed Wall Street, and Manahatta was renamed Manhattan (Smithsonian). Lenni Lenape placenames including Gowanus, Hackensack, Manhattan, Passaic, Rockaway, and Weehawken make up the toponymy of metropolitan New York.
The Lenni Lenape of the Esopus (including Catskill, Mamekoting, Waranawonkong, and Wawarsink) lived within the watershed and began encountering Dutch settlers in the early 1600’s. Later, waves of immigrants settled in the area. The new arrivals slowly pushed Native Americans from these ancestral lands. Historians have traced the beginning of water privatization to around the same time as in Malvern, England. There, spring water was first bottled on a commercial scale at The Holy Well. During the second Anglo-Dutch War, New Amsterdam was renamed New York to honor the Duke of York. The Duke of York later became King James II of England and James VII of Scotland. In 1667, the first public well was dug in front of Bowling Green, New York.

Toxic Water, Part I
While New York City’s water is now touted as some of the cleanest, unfiltered water, this was hardly the case in the 1600’s. The first well dug in 1667 pumped briny water, so most people drank from the Collect, which was the region’s main freshwater source. However, the Collect eventually became a site to dump chamber pots, dead animals, and tannery waste. It became so polluted the city paved over it, becoming Paradise Square, then Five Points, now Collect Pond Park. In the early 1700’s cleaner water was arduously transported from Brooklyn to Manhattan, which was tapped from wells in Brooklyn and western Long Island. While Brooklyn had an adequate supply of clean groundwater, it could not meet the needs of both Brooklyn and Manhattan residents. As the city’s population increased through the 19th century, more wells were dug without separate systems for sewage and garbage. Additionally, the wells that were dug to tap groundwater were stone-lined and became contaminated with salt water from the Hudson and East Rivers.

Toxic Water, Part II
Further fueling the quest for clean water, the foul quality of Manhattan’s water supply caused epidemics of yellow fever (the first of six epidemics killed nearly six percent of the population) and cholera. (The cholera outbreak was caused by the bacterium Vibrio cholerae, often found in contaminated water.) On June 26th, 1832 the first cholera outbreak struck Manhattan. Wealthy New Yorkers fled to the country to avoid infection (about one third of the population), leaving mostly immigrants and low-income families. More than 3,500 people died, with the first of many deaths in the Five Points neighborhood (current day Foley Square and Chinatown), where many Irish-Catholic immigrants and African Americans lived. The need for a new supply of fresh water for residents was crucial.

Tanneries
Around the same time, much of New York’s Catskill Mountain region and the Ashokan Watershed area had become central to resource extraction. Tanneries would be supplied by the area’s verdant hemlock trees, while charcoal kilns and quarries sprung up along rivers, creeks, lakes, streams and expanding trade routes.

Privatization, Part I: International Water Infrastructure
Internationally, a procession of water giants began to surface: Suez, Veolia, and Thames were among them. The dissolution of land-based commons (and with it, appropriation of many peoples sustenance) was perceived essential for the industrial revolution to provide the amount of “natural resources” to process raw material into industry. Commoditization of land, water, forests, fisheries, seeds, and knowledge had propelled a particular logic of privatization which would later become a crucial aspect of free trade ideology.

Privatization, Part II: Hamilton, Burr, and the Manhattan Company
Manhattan’s drinking water went through several privatization schemes as early as the 18th century. These were led by two State Assemblymen, Alexander Hamilton and Aaron Burr. Burr convinced city officials that public funds would be inadequate to develop a suitable reservoir and aqueduct. He created the Manhattan Company (later to become Chase Bank) to serve the public as the sole supplier of water and took control of the city’s water system in 1799. However, hidden in the bill that granted a charter to the Manhattan Company was a clause that stated that the company could use any surplus capital for other purposes. The company was expected to tap into the Bronx River but instead drilled wells into the polluted Collect Pond, which was much cheaper. Additionally, the company only laid 23 miles of pipes and charged an expensive rate of 20 dollars a year, which made it inaccessible to many citizens. Two thirds of the population still relied on polluted wells or buying spring water from expensive private vendors. Because of these failures, in 1816 several Common Council committees were appointed to investigate whether the legislature could grant the city the right to build a public water supply; however, nothing immediate was done about the toxic water and poor service. The first changes began around 1828 after repeated fires destroyed blocks because water mains and fire hydrants had not been extended to all parts of the city.

The Old Croton Dam
After exploring alternatives, in the late 1820’s, city officials made plans to extract water from the Croton River in Westchester County. The development of the city’s first successful public water supply system was a major engineering undertaking, constructed by almost 4,000 immigrants. The Old Croton Dam created a lake about 400 acres in size. The dam received considerable pushback from Westchester residents, who argued that it “disfigured their fields and divided property.” Water started flowing through the aqueduct on June 22, 1842, bringing water 41 miles from the Croton River to reservoirs in Manhattan. This changed domestic life in the city. Baths and running water were built in the private homes of wealthy New Yorkers, and public bathing facilities were constructed for everyone else. However, the decline in the number of residents drawing water from the city’s wells rose the water table and created floods. In an effort to further sanitation, city agencies also built sewers in many residential streets.

Source: Library of Congress. Link.
From Westchester to a Manhattan Potter’s Field
Many New York City residents viewed the watershed as an abstraction, and yet lived with some of its prominent infrastructure that transformed the face of the city. This included the High Bridge (which carried the old Croton Aqueduct over the Harlem River into Manhattan), Central Park’s two reservoirs, and the Croton Reservoir at Manhattan’s Murray Hill. The Croton Reservoir, with its 50’ high granite walls and public promenade atop, stood where the main branch of the New York Public Library and Bryant Park are today. Before it was a reservoir, the land where Bryant Park now stands was a potter’s field. To build the reservoir, thousands of bodies needed to be exhumed and reburied on Wards Island. The reservoir contributed to 5th Avenue becoming one of Manhattan’s most fashionable streets.

Becoming Boroughs
Brooklyn’s water supply was falling short of demand. The inducement of an improved water supply provoked Brooklyn and Staten Island’s residents to vote for annexation by Manhattan, and to become boroughs of New York City. However, this incorporation would require New York City to undertake another expansion. The commonality between all of the options for expanding New York City’s drinking water supply was the local communities disdained and resented the idea of ceding current or future water sources to the city.

Ramapo
As New York City looked to expand its water supply beyond the Croton Dam, both public and private sectors stymied the city’s ability to gain access to drinking water. The most egregious was likely the private Ramapo Water Company (likely named after the town in Rockland County, which was named after the Ramapough Lenape Nation meaning “sweet water” or “slanting rocks”), who attempted to gain control of the Catskill watershed in anticipation of the city’s needs. In 1895, the State’s Legislature granted Ramapo land and water rights in the Catskills. Under Ramapo’s control, the city would lose control over the design and cost of the city’s water supply. Furthermore, it was publicly disclosed that privatization would result in an annual municipal deficit and almost triple water costs to the city. Under pressure from the City Merchants Association and the City Comptroller, the State Legislature repealed its decision in 1901.

From the Housatonic to the Hudson – Two Plans Subsequently Scrapped
Populations, politics and hydrology shaped New York City’s drinking water. As the city was searching for more water sources in the early 1900s, the ten mile Housatonic watershed (much of which was in Connecticut) was identified as the most promising water source for the city. By 1903 however, legal precedent had established the practical impossibility of tapping interstate waters. That year, an engineering report was completed with a recommendation for the city to develop two new watersheds, one east of the Hudson River in Dutchess County (because of its quick three year build-out timeline), and the longer term Catskill Mountains watershed. Its lacustrine marshes, stagnant pools and rushing spates would later be broken up into the Catskill and Delaware watersheds. The Hudson River was one of New York City’s top options for drinking water because it didn’t cross state lines, even though Albany and Poughkeepsie depended on it for drinking water and it was polluted further downstream. What kept it from being developed, however, may have been its perception: would a city with such tremendous political power not be able to access the cleanest water for its residents?
The New Croton Reservoir
By 1906, the aqueduct commission had completed the New Croton Dam which expanded the existing Old Croton Reservoir to include the sprawling New Croton Reservoir, the centerpiece of the Croton network. New York added two more reservoirs over the next several years, finally completing the water system that had begun construction in 1837. The Croton project developed supporters in the budding Westchester County suburbs and nearby communities because they would be able to tap into the water system for their own use. However, it came with many struggles for other Westchester residents. New York City did not pay taxes and often abused farmers and their property, including burning their houses and barns. Going forward, this would be the extent of New York City’s ability to build in Westchester County due to restrictions instigated by Westchester and Dutchess County citizens and put in place by state officials.
Water Expansion by Eminent Domain, Part I
While New York City’s use of eminent domain began in 1830, the New York State Public Health law of 1905 allowed New York City to acquire land through eminent domain specifically for the expansion of the water supply area. The use of eminent domain forced thousands to move involuntarily, creating significant animosity towards the city. The uprooting of these families also affected the economy of the region. Much of the area was dedicated to farming, particularly in low lying land by rivers and creeks, which had more productive soil. However, this was exactly the land that the city took in order to build the reservoirs.

Water Expansion by Eminent Domain, Part II
For future expansion, the Catskill watershed looked the most promising. However, the support of Catskill residents was divided. Some seemed eager to sell their land to the city and others were wary of losing their homes and livelihoods to eminent domain. In stronger opposition, the representatives of Ulster County in Albany preemptively filed legislation to bar New York from tapping the county’s waters. Over the course of a few years however, this political landscape had changed.

Flooding the Catskills
With the sanction of higher political authorities, the city appropriated what it saw as the countryside’s resources, and remade ecosystems to sustain its own growth for decades. While Catskills settlers whose land was taken over by eminent domain did see their day in court, many said they only received a modicum of social and economic justice. While thousands of people obtained steady employment as laborers on the Catskill project, waterworks construction harmed the local economy overall by damaging boardinghouse tourism and flooding fertile agricultural land. History repeated itself, in this case often less violently, and glossed over the sacrifices made by displaced watershed residents.

Check back weekly for new content or follow #YearofPublicWater on Instagram and Twitter.
